
D03 – Partial Differential Equations

D03PEF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D03PEF integrates a system of linear or nonlinear, first-order, time-dependent partial differential
equations (PDEs) in one space variable. The spatial discretisation is performed using the Keller box
scheme and the method of lines is employed to reduce the PDEs to a system of ordinary differential
equations (ODEs). The resulting system is solved using a Backward Differentiation Formula (BDF)
method.

2 Specification

SUBROUTINE D03PEF(NPDE, TS, TOUT, PDEDEF, BNDARY, U, NPTS, X,
1 NLEFT, ACC, W, NW, IW, NIW, ITASK, ITRACE, IND,
2 IFAIL)
INTEGER NPDE, NPTS, NLEFT, NW, IW(NIW), NIW, ITASK,
1 ITRACE, IND, IFAIL
real TS, TOUT, U(NPDE,NPTS), X(NPTS), ACC, W(NW)
EXTERNAL PDEDEF, BNDARY

3 Description

D03PEF integrates the system of first-order PDEs

Gi(x, t, U, Ux, Ut) = 0, i = 1, 2, ...,NPDE. (1)

In particular the functions Gi must have the general form:

Gi =
NPDE∑

j=1

Pi,j

∂Uj

∂t
+Qi, i = 1, 2, ...,NPDE, a ≤ x ≤ b, t ≥ t0, (2)

where Pi,j and Qi depend on x, t, U , Ux and the vector U is the set of solution values

U(x, t) = [U1(x, t), ..., UNPDE(x, t)]T , (3)

and the vector Ux is its partial derivative with respect to x. Note that Pi,j and Qi must not depend on
∂U
∂t .

The integration in time is from t0 to tout, over the space interval a ≤ x ≤ b, where a = x1 and b = xNPTS

are the leftmost and rightmost points of a user-defined mesh x1, x2, . . . , xNPTS. The mesh should be
chosen in accordance with the expected behaviour of the solution.

The PDE system which is defined by the functions Gi must be specified in a subroutine PDEDEF supplied
by the user.

The initial values of the functions U(x, t) must be given at t = t0. For a first-order system of PDEs, only
one boundary condition is required for each PDE component Ui. The NPDE boundary conditions are
separated into NLEFT at the left-hand boundary x = a, and NRIGHT at the right-hand boundary x = b,
such that NLEFT + NRIGHT = NPDE. The position of the boundary condition for each component
should be chosen with care; the general rule is that if the characteristic direction of Ui at the left-hand
boundary (say) points into the interior of the solution domain, then the boundary condition for Ui should
be specified at the left-hand boundary. Incorrect positioning of boundary conditions generally results in
initialisation or integration difficulties in the underlying time integration routines.

The boundary conditions have the form:

GL
i (x, t, U, Ut) = 0, at x = a, i = 1, 2, ...,NLEFT (4)

[NP3390/19/pdf] D03PEF.1

D03PEF D03 – Partial Differential Equations

at the left-hand boundary, and

GR
i (x, t, U, Ut) = 0, at x = b, i = 1, 2, ...,NRIGHT (5)

at the right-hand boundary.

Note that the functions GL
i and GR

i must not depend on Ux, since spatial derivatives are not determined
explicitly in the Keller box scheme [3]. If the problem involves derivative (Neumann) boundary conditions
then it is generally possible to restate such boundary conditions in terms of permissible variables. Also
note that GL

i and GR
i must be linear with respect to time derivatives, so that the boundary conditions

have the general form:
NPDE∑

j=1

EL
i,j

∂Uj

∂t
+ SL

i = 0, i = 1, 2, ...,NLEFT (6)

at the left-hand boundary, and
NPDE∑

j=1

ER
i,j

∂Uj

∂t
+ SR

i = 0, i = 1, 2, ...,NRIGHT (7)

at the right-hand boundary, where EL
i,j , ER

i,j , SL
i , and SR

i depend on x, t and U only.

The boundary conditions must be specified in a subroutine BNDARY provided by the user.

The problem is subject to the following restrictions:

(i) t0 < tout, so that integration is in the forward direction;
(ii) Pi,j and Qi must not depend on any time derivatives;
(iii) The evaluation of the function Gi is done at the mid-points of the mesh intervals by calling the

routine PDEDEF for each mid-point in turn. Any discontinuities in the function must therefore be
at one or more of the mesh points x1, x2, . . . , xNPTS;

(iv) At least one of the functions Pi,j must be non-zero so that there is a time derivative present in the
problem.

In this method of lines approach the Keller box scheme [3] is applied to each PDE in the space variable
only, resulting in a system of ODEs in time for the values of Ui at each mesh point. In total there are
NPDE × NPTS ODEs in the time direction. This system is then integrated forwards in time using a
BDF method.

4 References

[1] Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific
Software Systems (ed J C Mason and M G Cox) Chapman and Hall 59–72

[2] Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems
using the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

[3] Keller H B (1970) A new difference scheme for parabolic problems Numerical Solutions of Partial
Differential Equations (ed J Bramble) 2 Academic Press 327–350

[4] Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
equations ACM Trans. Math. Softw. 20 63–99

5 Parameters

1: NPDE — INTEGER Input
On entry: the number of PDEs in the system to be solved.

Constraint: NPDE ≥ 1.

2: TS — real Input/Output
On entry: the initial value of the independent variable t.

Constraint: TS < TOUT.

On exit: the value of t corresponding to the solution values in U. Normally TS = TOUT.

D03PEF.2 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PEF

3: TOUT — real Input
On entry: the final value of t to which the integration is to be carried out.

4: PDEDEF — SUBROUTINE, supplied by the user. External Procedure
PDEDEF must compute the functions Gi which define the system of PDEs. PDEDEF is called
approximately midway between each pair of mesh points in turn by D03PEF.
Its specification is:

SUBROUTINE PDEDEF(NPDE, T, X, U, UT, UX, RES, IRES)
INTEGER NPDE, IRES
real T, X, U(NPDE), UT(NPDE), UX(NPDE), RES(NPDE)

1: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

2: T — real Input
On entry: the current value of the independent variable t.

3: X — real Input
On entry: the current value of the space variable x.

4: U(NPDE) — real array Input
On entry: U(i) contains the value of the component Ui(x, t), for i = 1, 2, . . . ,NPDE.

5: UT(NPDE) — real array Input
On entry: UT(i) contains the value of the component ∂Ui(x,t)

∂t , for i = 1, 2, . . . ,NPDE.

6: UX(NPDE) — real array Input
On entry: UX(i) contains the value of the component ∂Ui(x,t)

∂x , for i = 1, 2, . . . ,NPDE.

7: RES(NPDE) — real array Output
On exit: RES(i) must contain the ith component of G, for i = 1, 2, . . . ,NPDE, where G is
defined as

Gi =
NPDE∑

j=1

Pi,j

∂Uj

∂t
, (8)

i.e., only terms depending explicitly on time derivatives, or

Gi =
NPDE∑

j=1

Pi,j

∂Uj

∂t
+Qi, (9)

i.e., all terms in equation (2).

The definition of G is determined by the input value of IRES.

8: IRES — INTEGER Input/Output
On entry: the form of Gi that must be returned in the array RES. If IRES = −1, then equation
(8) above must be used. If IRES = 1, then equation (9) above must be used.

On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions, as described below:

IRES = 2
indicates to the integrator that control should be passed back immediately to the calling
(sub)program with the error indicator (IFAIL) set to 6.

IRES = 3
indicates to the integrator that the current time step should be abandoned and a smaller
time step used instead. The user may wish to set IRES = 3 when a physically meaningless
input or output value has been generated. If the user consecutively sets IRES = 3, then
D03PEF returns to the calling (sub)program with the error indicator (IFAIL) set to 4.

[NP3390/19/pdf] D03PEF.3

D03PEF D03 – Partial Differential Equations

PDEDEF must be declared as EXTERNAL in the (sub)program from which D03PEF is called.
Parameters denoted as Input must not be changed by this procedure.

5: BNDARY — SUBROUTINE, supplied by the user. External Procedure

BNDARY must compute the functions GL
i and GR

i which define the boundary conditions as in
equations (4) and (5).

Its specification is:

SUBROUTINE BNDARY(NPDE, T, IBND, NOBC, U, UT, RES, IRES)
INTEGER NPDE, IBND, NOBC, IRES
real T, U(NPDE), UT(NPDE), RES(NOBC)

1: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

2: T — real Input
On entry: the current value of the independent variable t.

3: IBND — INTEGER Input
On entry: IBND determines the position of the boundary conditions. If IBND = 0, then
BNDARY must compute the left-hand boundary condition at x = a. Any other value of IBND
indicates that BNDARY must compute the right-hand boundary condition at x = b.

4: NOBC — INTEGER Input
On entry: NOBC specifies the number of boundary conditions at the boundary specified by
IBND.

5: U(NPDE) — real array Input
On entry: U(i) contains the value of the component Ui(x, t) at the boundary specified by
IBND, for i = 1, 2, . . . ,NPDE.

6: UT(NPDE) — real array Input
On entry: UT(i) contains the value of the component ∂Ui(x,t)

∂t at the boundary specified by
IBND, for i = 1, 2, . . . ,NPDE.

7: RES(NOBC) — real array Output
On exit: RES(i) must contain the ith component of GL or GR, depending on the value of
IBND, for i = 1, 2, . . . ,NOBC, where GL is defined as

GL
i =

NPDE∑

j=1

EL
i,j

∂Uj

∂t
, (10)

i.e., only terms depending explicitly on time derivatives, or

GL
i =

NPDE∑

j=1

EL
i,j

∂Uj

∂t
+ SL

i , (11)

i.e., all terms in equation (6), and similarly for GR
i .

The definitions of GL and GR are determined by the input value of IRES.

8: IRES — INTEGER Input/Output
On entry: the form GL

i (or GR
i) that must be returned in the array RES. If IRES = −1, then

equation (10) above must be used. If IRES = 1, then equation (11) above must be used.

On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions, as described below:

IRES = 2
indicates to the integrator that control should be passed back immediately to the calling
(sub)program with the error indicator (IFAIL) set to 6.

D03PEF.4 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PEF

IRES = 3
indicates to the integrator that the current time step should be abandoned and a smaller
time step used instead. The user may wish to set IRES = 3 when a physically meaningless
input or output value has been generated. If the user consecutively sets IRES = 3, then
D03PEF returns to the calling (sub)program with the error indicator (IFAIL) set to 4.

BNDARY must be declared as EXTERNAL in the (sub)program from which D03PEF is called.
Parameters denoted as Input must not be changed by this procedure.

6: U(NPDE,NPTS) — real array Input/Output

On entry: the initial values of U(x, t) at t = TS and the mesh points X(j), for j = 1, 2, . . . ,NPTS.

On exit: U(i, j) will contain the computed solution at t = TS.

7: NPTS — INTEGER Input

On entry: the number of mesh points in the interval [a, b].

Constraint: NPTS ≥ 3.

8: X(NPTS) — real array Input

On entry: the mesh points in the spatial direction. X(1) must specify the left-hand boundary, a,
and X(NPTS) must specify the right-hand boundary, b.

Constraint: X(1) < X(2) < . . . < X(NPTS).

9: NLEFT — INTEGER Input

On entry: the number of boundary conditions at the left-hand mesh point X(1).

Constraint: 0 ≤ NLEFT ≤ NPDE.

10: ACC — real Input

On entry: a positive quantity for controlling the local error estimate in the time integration. If
E(i, j) is the estimated error for Ui at the jth mesh point, the error test is:

|E(i, j)| = ACC× (1.0 + |U(i, j)|).

Constraint: ACC > 0.0.

11: W(NW) — real array Workspace
12: NW — INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D03PEF is
called.

Constraint: NW ≥ (4×NPDE+NLEFT+14)×NPDE×NPTS+ (3×NPDE+21)×NPDE+7×
NPTS + 54.

13: IW(NIW) — INTEGER array Output

On exit: the following components of the array IW concern the efficiency of the integration.

IW(1) contains the number of steps taken in time.

IW(2) contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one evaluation
of the functions in each of the boundary conditions.

IW(3) contains the number of Jacobian evaluations performed by the time integrator.

[NP3390/19/pdf] D03PEF.5

D03PEF D03 – Partial Differential Equations

IW(4) contains the order of the last BDF method used.

IW(5) contains the number of Newton iterations performed by the time integrator. Each iteration
involves an ODE residual evaluation followed by a back-substitution using the LU decomposition
of the Jacobian matrix.

The rest of the array is used as workspace.

14: NIW — INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D03PEF is
called.

Constraint: NIW ≥ NPDE×NPTS + 24.

15: ITASK — INTEGER Input

On entry: specifies the task to be performed by the ODE integrator. The permitted values of ITASK
and their meanings are described below:

ITASK = 1
normal computation of output values U at t = TOUT.

ITASK = 2
take one step and return.

ITASK = 3
stop at the first internal integration point at or beyond t = TOUT.

Constraint: 1 ≤ ITASK ≤ 3.

16: ITRACE — INTEGER Input

On entry: the level of trace information required from D03PEF and the underlying ODE solver as
follows:

If ITRACE ≤ −1, no output is generated.

If ITRACE = 0, only warning messages from the PDE solver are printed on the current error
message unit (see X04AAF).

If ITRACE = 1, then output from the underlying ODE solver is printed on the current advisory
message unit (see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration
and the time integration during the computation of the ODE system.

If ITRACE = 2, then the output from the underlying ODE solver is similar to that produced when
ITRACE = 1, except that the advisory messages are given in greater detail.

If ITRACE ≥ 3, then the output from the underlying ODE solver is similar to that produced when
ITRACE = 2, except that the advisory messages are given in greater detail.

Users are advised to set ITRACE = 0, unless they are experienced with the subchapter D02M–N of
the NAG Fortran Library.

17: IND — INTEGER Input/Output

On entry: IND must be set to 0 or 1.

IND = 0
starts or restarts the integration in time.

IND = 1
continues the integration after an earlier exit from the routine. In this case, only the parameters
TOUT and IFAIL should be reset between calls to D03PEF.

Constraint: 0 ≤ IND ≤ 1.

On exit: IND = 1.

D03PEF.6 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PEF

18: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, TOUT ≤ TS,

or (TOUT− TS) is too small,

or ITASK �= 1, 2 or 3,

or X(i), for i = 1, 2, . . . ,NPTS are not ordered correctly,

or NPTS < 3,

or NPDE < 1,

or NLEFT is not in the range 0 to NPDE,

or ACC ≤ 0.0,

or IND �= 0 or 1,

or NW is too small,

or NIW is too small,

or D03PEF called initially with IND = 1.

IFAIL = 2

The underlying ODE solver cannot make any further progress, across the integration range from
the current point t = TS with the supplied value of ACC. The components of U contain the
computed values at the current point t = TS.

IFAIL = 3

In the underlying ODE solver, there were repeated errors or corrector convergence test failures on
an attempted step, before completing the requested task. The problem may have a singularity
or ACC is too small for the integration to continue. Incorrect positioning of boundary conditions
may also result in this error. Integration was successful as far as t = TS.

IFAIL = 4

In setting up the ODE system, the internal initialisation routine was unable to initialise the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to
3 in the user-supplied subroutine PDEDEF or BNDARY, when the residual in the underlying
ODE solver was being evaluated. Incorrect positioning of boundary conditions may also result in
this error.

IFAIL = 5

In solving the ODE system, a singular Jacobian has been encountered. The user should check their
problem formulation.

IFAIL = 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in one of the user-
supplied subroutines PDEDEF or BNDARY. Integration was successful as far as t = TS.

IFAIL = 7

The value of ACC is so small that the routine is unable to start the integration in time.

IFAIL = 8

In one of the user-supplied routines, PDEDEF or BNDARY, IRES was set to an invalid value.

[NP3390/19/pdf] D03PEF.7

D03PEF D03 – Partial Differential Equations

IFAIL = 9

A serious error has occurred in an internal call to D02NNF. Check problem specification and all
parameters and array dimensions. Setting ITRACE = 1 may provide more information. If the
problem persists, contact NAG.

IFAIL = 10

The required task has been completed, but it is estimated that a small change in ACC is unlikely
to produce any change in the computed solution. (Only applies when the user is not operating in
one step mode, that is when ITASK �= 2.)

IFAIL = 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error
description may be directed to the current advisory message unit).

7 Accuracy

The routine controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so
the accuracy over a number of steps cannot be guaranteed. The user should therefore test the effect of
varying the accuracy parameter, ACC.

8 Further Comments

The Keller box scheme can be used to solve higher-order problems which have been reduced to first-order
by the introduction of new variables (see the example problem in D03PKF). In general, a second-order
problem can be solved with slightly greater accuracy using the Keller box scheme instead of a finite-
difference scheme (D03PCF/D03PHF for example), but at the expense of increased CPU time due to the
larger number of function evaluations required.

It should be noted that the Keller box scheme, in common with other central-difference schemes, may
be unsuitable for some hyperbolic first-order problems such as the apparently simple linear advection
equation Ut + aUx = 0, where a is a constant, resulting in spurious oscillations due to the lack of
dissipation. This type of problem requires a discretisation scheme with upwind weighting (D03PFF for
example), or the addition of a second-order artificial dissipation term.

The time taken by the routine depends on the complexity of the system and on the accuracy requested.

9 Example

This example is the simple first-order system

∂U1

∂t
+

∂U1

∂x
+

∂U2

∂x
= 0,

∂U2

∂t
+ 4

∂U1

∂x
+

∂U2

∂x
= 0,

for t ∈ [0, 1] and x ∈ [0, 1].

The initial conditions are
U1(x, 0) = exp(x), U2(x, 0) = sin(x),

and the Dirichlet boundary conditions for U1 at x = 0 and U2 at x = 1 are given by the exact solution:

U1(x, t) =
1
2
{exp(x + t) + exp(x − 3t)}+ 1

4
{sin(x − 3t)− sin(x + t)} ,

U2(x, t) = exp(x − 3t)− exp(x + t) +
1
2
{sin(x + t) + sin(x − 3t)} .

D03PEF.8 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PEF

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D03PEF Example Program Text
* Mark 16 Release. NAG Copyright 1993.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NPDE, NPTS, NLEFT, NEQN, NIW, NWKRES, NW
PARAMETER (NPDE=2,NPTS=41,NLEFT=1,NEQN=NPDE*NPTS,

+ NIW=NEQN+24,NWKRES=NPDE*(NPTS+21+3*NPDE)
+ +7*NPTS+4,NW=11*NEQN+(4*NPDE+NLEFT+2)
+ *NEQN+50+NWKRES)

* .. Local Scalars ..
real ACC, TOUT, TS
INTEGER I, IFAIL, IND, IT, ITASK, ITRACE

* .. Local Arrays ..
real EU(NPDE,NPTS), U(NPDE,NPTS), W(NW), X(NPTS)
INTEGER IW(NIW)

* .. External Subroutines ..
EXTERNAL BNDARY, D03PEF, EXACT, PDEDEF, UINIT

* .. Executable Statements ..
WRITE (NOUT,*) ’D03PEF Example Program Results’
ITRACE = 0
ACC = 0.1e-5
WRITE (NOUT,99997) ACC, NPTS

*
* Set spatial-mesh points
*

DO 20 I = 1, NPTS
X(I) = (I-1.0e0)/(NPTS-1.0e0)

20 CONTINUE
WRITE (NOUT,99999) X(5), X(13), X(21), X(29), X(37)

*
IND = 0
ITASK = 1

*
CALL UINIT(NPDE,NPTS,X,U)

*
* Loop over output value of t

TS = 0.0e0
TOUT = 0.0e0
DO 40 IT = 1, 5

TOUT = 0.2e0*IT
IFAIL = -1

*
CALL D03PEF(NPDE,TS,TOUT,PDEDEF,BNDARY,U,NPTS,X,NLEFT,ACC,W,NW,

+ IW,NIW,ITASK,ITRACE,IND,IFAIL)
*
* Check against the exact solution
*

CALL EXACT(TOUT,NPDE,NPTS,X,EU)
*

WRITE (NOUT,99998) TS
WRITE (NOUT,99995) U(1,5), U(1,13), U(1,21), U(1,29), U(1,37)
WRITE (NOUT,99994) EU(1,5), EU(1,13), EU(1,21), EU(1,29),

+ EU(1,37)

[NP3390/19/pdf] D03PEF.9

D03PEF D03 – Partial Differential Equations

WRITE (NOUT,99993) U(2,5), U(2,13), U(2,21), U(2,29), U(2,37)
WRITE (NOUT,99992) EU(2,5), EU(2,13), EU(2,21), EU(2,29),

+ EU(2,37)
40 CONTINUE

WRITE (NOUT,99996) IW(1), IW(2), IW(3), IW(5)
STOP

*
99999 FORMAT (’ X ’,5F10.4,/)
99998 FORMAT (’ T = ’,F5.2)
99997 FORMAT (//’ Accuracy requirement =’,e10.3,’ Number of points = ’,

+ I3,/)
99996 FORMAT (’ Number of integration steps in time = ’,I6,/’ Number o’,

+ ’f function evaluations = ’,I6,/’ Number of Jacobian eval’,
+ ’uations =’,I6,/’ Number of iterations = ’,I6,/)

99995 FORMAT (’ Approx U1’,5F10.4)
99994 FORMAT (’ Exact U1’,5F10.4)
99993 FORMAT (’ Approx U2’,5F10.4)
99992 FORMAT (’ Exact U2’,5F10.4,/)

END
*

SUBROUTINE UINIT(NPDE,NPTS,X,U)
* Routine for PDE initial values
* .. Scalar Arguments ..

INTEGER NPDE, NPTS
* .. Array Arguments ..

real U(NPDE,NPTS), X(NPTS)
* .. Local Scalars ..

INTEGER I
* .. Intrinsic Functions ..

INTRINSIC EXP, SIN
* .. Executable Statements ..

DO 20 I = 1, NPTS
U(1,I) = EXP(X(I))
U(2,I) = SIN(X(I))

20 CONTINUE
RETURN
END

*
SUBROUTINE PDEDEF(NPDE,T,X,U,UDOT,DUDX,RES,IRES)

* .. Scalar Arguments ..
real T, X
INTEGER IRES, NPDE

* .. Array Arguments ..
real DUDX(NPDE), RES(NPDE), U(NPDE), UDOT(NPDE)

* .. Executable Statements ..
IF (IRES.EQ.-1) THEN

RES(1) = UDOT(1)
RES(2) = UDOT(2)

ELSE
RES(1) = UDOT(1) + DUDX(1) + DUDX(2)
RES(2) = UDOT(2) + 4.0e0*DUDX(1) + DUDX(2)

END IF
RETURN
END

*

D03PEF.10 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PEF

SUBROUTINE BNDARY(NPDE,T,IBND,NOBC,U,UDOT,RES,IRES)
* .. Scalar Arguments ..

real T
INTEGER IBND, IRES, NOBC, NPDE

* .. Array Arguments ..
real RES(NOBC), U(NPDE), UDOT(NPDE)

* .. Intrinsic Functions ..
INTRINSIC EXP, SIN

* .. Executable Statements ..
IF (IBND.EQ.0) THEN

IF (IRES.EQ.-1) THEN
RES(1) = 0.0e0

ELSE
RES(1) = U(1) - 0.5e0*(EXP(T)+EXP(-3.0e0*T)) -

+ 0.25e0*(SIN(-3.0e0*T)-SIN(T))
END IF

ELSE
IF (IRES.EQ.-1) THEN

RES(1) = 0.0e0
ELSE

RES(1) = U(2) - EXP(1.0e0-3.0e0*T) + EXP(1.0e0+T) -
+ 0.5e0*(SIN(1.0e0-3.0e0*T)+SIN(1.0e0+T))

END IF
END IF
RETURN
END

*
SUBROUTINE EXACT(T,NPDE,NPTS,X,U)

* Exact solution (for comparison purposes)
* .. Scalar Arguments ..

real T
INTEGER NPDE, NPTS

* .. Array Arguments ..
real U(NPDE,NPTS), X(NPTS)

* .. Local Scalars ..
INTEGER I

* .. Intrinsic Functions ..
INTRINSIC EXP, SIN

* .. Executable Statements ..
DO 20 I = 1, NPTS

U(1,I) = 0.5e0*(EXP(X(I)+T)+EXP(X(I)-3.0e0*T)) +
+ 0.25e0*(SIN(X(I)-3.0e0*T)-SIN(X(I)+T))

U(2,I) = EXP(X(I)-3.0e0*T) - EXP(X(I)+T) + 0.5e0*(SIN(X(I)
+ -3.0e0*T)+SIN(X(I)+T))

20 CONTINUE
RETURN
END

9.2 Program Data

None.

[NP3390/19/pdf] D03PEF.11

D03PEF D03 – Partial Differential Equations

9.3 Program Results

D03PEF Example Program Results

Accuracy requirement = 0.100E-05 Number of points = 41

X 0.1000 0.3000 0.5000 0.7000 0.9000

T = 0.20
Approx U1 0.7845 1.0010 1.2733 1.6115 2.0281
Exact U1 0.7845 1.0010 1.2733 1.6115 2.0281
Approx U2 -0.8352 -0.8159 -0.8367 -0.9128 -1.0609
Exact U2 -0.8353 -0.8160 -0.8367 -0.9129 -1.0609

T = 0.40
Approx U1 0.6481 0.8533 1.1212 1.4627 1.8903
Exact U1 0.6481 0.8533 1.1212 1.4627 1.8903
Approx U2 -1.5216 -1.6767 -1.8934 -2.1917 -2.5944
Exact U2 -1.5217 -1.6767 -1.8935 -2.1917 -2.5945

T = 0.60
Approx U1 0.6892 0.8961 1.1747 1.5374 1.9989
Exact U1 0.6892 0.8962 1.1747 1.5374 1.9989
Approx U2 -2.0047 -2.3434 -2.7677 -3.3002 -3.9680
Exact U2 -2.0048 -2.3436 -2.7678 -3.3003 -3.9680

T = 0.80
Approx U1 0.8977 1.1247 1.4320 1.8349 2.3514
Exact U1 0.8977 1.1247 1.4320 1.8349 2.3512
Approx U2 -2.3403 -2.8675 -3.5110 -4.2960 -5.2536
Exact U2 -2.3405 -2.8677 -3.5111 -4.2961 -5.2537

T = 1.00
Approx U1 1.2470 1.5206 1.8828 2.3528 2.9519
Exact U1 1.2470 1.5205 1.8829 2.3528 2.9518
Approx U2 -2.6229 -3.3338 -4.1998 -5.2505 -6.5218
Exact U2 -2.6232 -3.3340 -4.2001 -5.2507 -6.5219

Number of integration steps in time = 149
Number of function evaluations = 399
Number of Jacobian evaluations = 13
Number of iterations = 323

D03PEF.12 (last) [NP3390/19/pdf]

